Convex quadratic relaxations for mixed-integer nonlinear programs in power systems
نویسندگان
چکیده
منابع مشابه
Convex quadratic relaxations for mixed-integer nonlinear programs in power systems
Abstract This paper presents a set of new convex quadratic relaxations for nonlinear and mixed-integer nonlinear programs arising in power systems. The considered models are motivated by hybrid discrete/continuous applications where existing approximations do not provide optimality guarantees. The new relaxations offer computational efficiency along with minimal optimality gaps, providing an in...
متن کاملImproved quadratic cuts for convex mixed-integer nonlinear programs
This paper presents scaled quadratic cuts based on scaling the second-order Taylor expansion terms for the decomposition methods Outer Approximation (OA) and Partial Surrogate Cuts (PSC) used for solving convex Mixed Integer Nonlinear Programing (MINLP). The scaled quadratic cut is proved to be a stricter and tighter underestimation for the convex nonlinear functions than the classical supporti...
متن کاملSemidefinite relaxations for non-convex quadratic mixed-integer programming
We present semidefinite relaxations for unconstrained nonconvex quadratic mixed-integer optimization problems. These relaxations yield tight bounds and are computationally easy to solve for mediumsized instances, even if some of the variables are integer and unbounded. In this case, the problem contains an infinite number of linear constraints; these constraints are separated dynamically. We us...
متن کاملGap inequalities for non-convex mixed-integer quadratic programs
Laurent and Poljak introduced a very general class of valid linear inequalities, called gap inequalities, for the max-cut problem. We show that an analogous class of inequalities can be defined for general nonconvex mixed-integer quadratic programs. These inequalities dominate some inequalities arising from a natural semidefinite relaxation.
متن کاملConvex relaxations for mixed integer predictive control
The main objective in this work is to compare different convex relaxations for Model Predictive Control (MPC) problems with mixed real valued and binary valued control signals. In the problem description considered, the objective function is quadratic, the dynamics are linear, and the inequality constraints on states and control signals are all linear. The relaxations are related theoretically ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematical Programming Computation
سال: 2016
ISSN: 1867-2949,1867-2957
DOI: 10.1007/s12532-016-0112-z